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Design-based causal inference—a recent approach for impact estimation 

Design-based methods have recently been developed as a way to analyze data from impact evaluations 
of interventions, programs, and policies (see, for example, Imbens and Rubin, 2015 and Schochet, 
2015, 2016). The impact estimators are derived using the building blocks of experimental designs 
with minimal assumptions, and have good statistical properties. The methods apply to randomized 
controlled trials (RCTs) and quasi-experimental designs (QEDs) with treatment and control 
(comparison) groups. Importantly, design-based estimators are acceptable for What Works 
Clearinghouse (WWC) evidence reviews (Scher and Cole, 2017). The free RCT-YES software 
(www.rct-yes.com) estimates impacts using these estimators, and reports impact findings in formatted 
tables with key information required by the WWC.1 

Although the fundamental concepts that underlie design-based methods are straightforward, the 
literature on these methods is technical, with detailed mathematical proofs required to formalize the 
theory. Thus, the daunting task of wading through this literature might discourage some education 
researchers from using design-based methods in favor of more traditional “model-based” methods, 
such as hierarchical linear modeling (HLM) (Raudenbush and Bryk, 2002).  

This brief aims to broaden knowledge of design-based methods by providing intuition on their key 
concepts and how they compare to model-based methods as typically implemented. Using simple 
mathematical notation, the brief is geared toward education researchers with a good knowledge of 
evaluation designs and HLM. The discussion synthesizes Schochet (2016), omitting details for 
brevity and accessibility. The focus is on RCTs, although key concepts apply also to QEDs.  

The theory in a nutshell  

Design-based theory is derived directly from the Neyman-Holland-Rubin causal inference model that 
underlies experiments (Holland, 1986; Rubin, 1974). Consider the simplest RCT design where 
individuals are randomly assigned to either a treatment group that is offered an intervention or a 
control group that is not. The study participants are followed for a period of time and outcome data, 
such as achievement test scores, are collected on the sample. Let    denote the outcome variable 

for individual i.   

Ideally, we would like to measure each individual’s “potential” outcome in the treatment condition 
(   ) and in the control condition (

  ). With this information, we could calculate each 

individual’s treatment effect,     , and then the average treatment effect,      

which is the impact parameter of interest for most evaluations in the education field. 

1 RCT-YES was funded by the Institute of Education Sciences (IES) to support the conduct of rigorous impact evaluations by education 
agencies and school districts. 
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Unfortunately, we can only observe either TiY  or CiY  depending on the random assignment results, 

but not both. This means we cannot directly calculate individual and average treatment effects. We 
can demonstrate this concept mathematically by relating the observed outcome, iy , to the potential 

outcomes, TiY  and CiY , as follows: 

                

where    is an indicator variable that equals 1 for those assigned to the treatment group and 0 for 

those assigned to the control group. Equation (1) simply states we can observe     for those 

in the treatment group and    for those in the control group.  

Equations (1) and (2) underlie design-based 
theory by linking the observed data to the 
random assignment process. All impact 
estimators are derived using these relations, 
with minimal assumptions.  

Design-based theory uses the relation in Equation (1) to 
develop estimators for the unobserved average treatment 

effect,   The idea is to first add   and       to both 

sides of Equation (1)—which does not change the equation—
and to then rearrange terms in the equation to produce the 
following regression model:  

           

where     is the intercept,        is the average treatment effect parameter we want to 

estimate, and   is the model “error” term. Importantly,   is random only because    is random; 

the potential outcomes are assumed to be fixed for the study.   

The design-based model in Equation (2) has statistical properties that differ from the standard linear 
model typically used to estimate impacts for RCTs. For example, the error term,   , does not have 

mean 0 or constant variance and is correlated with the regressor,   . Yet it can be shown that 

estimating this model using standard ordinary least squares (OLS) produces a differences-in-means 

impact estimator based on the observed data,  
      , that has the following desirable 

statistical properties (see, for example, Schochet, 2016):  

• Unbiased, meaning that the estimator will, on average, equal the true impact parameter across 
all possible random assignment results   

• Normally distributed in large samples, so that standard t-tests or z-tests can be used to test the 
null hypothesis of zero average treatment effects 

• Simple variance estimator, shown in Box 1 at the end of the brief, with separate variance terms 
for the treatment and control groups  
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This same theory applies to impact estimators for the full sample and for subgroups defined by 
baseline characteristics, such as gender or academic proficiency level in the prior year.  

The key feature of design-based theory, then, is that it uses the random assignment process to build 
the impact estimation model in Equation (2). In contrast, model-based approaches specify an ad hoc 
model structure (for example, the standard OLS model) that is assumed to be true to ensure unbiased 
estimators. But it is not possible to fully verify these model assumptions. We discuss differences 
between the design-based and model-based approaches more fully later in the brief.  

Extensions to clustered (multilevel) designs  

The above theory can be extended to clustered designs where groups (such as schools or classrooms) 
are randomly assigned to the treatment and control groups instead of individuals. For example, a 
common design used in education RCTs randomizes schools and collects outcome data for students.     

For clustered designs, for simplicity, we consider design-based methods that average the individual data to 

the group level, although individual data could also be used for estimation (Schochet, 2013). As an 
example, in an RCT where schools are randomized, we consider estimators where the student-level 
data (such as test scores) are averaged to the school level for the analysis. In this context, we can 

define potential outcomes (student averages) for school j as    for treatment schools and   for 

control schools. The school-level treatment effect is      , which cannot be observed because 

we can only measure    or   , but not both. The impact parameter of interest,          

is a weighted average of these school-level treatment effects, which can also be expressed as a weighted 
average of student-level treatment effects (weights are discussed in more detail later).   

Parallel to Equation (1) for the non-clustered design above, we can now relate the observed mean 

outcome,   , to the potential outcomes,    and   , as follows:  

               

where    equals 1 for schools assigned to the treatment group 

and 0 for schools assigned to the control group. As before, we 

can add    and      to both sides of this equation and 

rearrange terms to form a regression model similar to 

Equation (2) where    is regressed on   , with the model 

error term,   , defined by the randomization process: 

Equations (3) and (4) underlie design-
based theory for clustered designs where 
groups, such as schools, are randomized. 
These relations link the observed data—
averaged to the cluster level—to the 
random assignment process.  
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Estimating this model using weighted least squares yields a weighted differences-in-means impact 
estimator that, in large samples, is unbiased (consistent) and normally distributed with a simple 
variance estimator (see Box 2 at the end of the brief). Standard z-tests or t-tests can be used for 
hypothesis testing where the degrees of freedom are based on the number of clusters in the sample.  

This approach to clustering differs from HLM, where an ad hoc model specification and error 
structure are assumed to be true at each HLM level. But it is difficult to fully verify these HLM model 
assumptions. Next, we discuss the advantages of the design-based approach in more detail. 

Advantages of the design-based approach   

Education researchers have typically used OLS or HLM methods to analyze RCT data. The main 
advantage these methods have over the design-based methods is that they could yield more precise 

impact estimates. However, this will only necessarily 
happen if the model is specified correctly. With 
misspecification, the model-based approaches could 
yield biased estimates. For example, HLM models for 
multilevel designs typically assume the error terms are 
additive at each level, normally distributed, 
independent of each other, and uncorrelated with the 
treatment status indicator variable. These models also 
typically assume treatment effects are the same for 
everybody. These model assumptions may or may not 
be correct; the design-based approach avoids our 
having to make them.   

Benefits of the design-based approach include: 

Requires minimal assumptions  
Applies to continuous and binary outcomes 
Yields simple variance estimators 
Requires less data for clustered designs 
Allows assumptions on the generalizability of results 
Accommodates flexible models with baseline covariates 
Extends to blocked designs 
Provides transparency on cluster and block weighting 
More suited to RCTs than “robust” estimators  
Performs well in simulations 

There are several important advantages to the design-based approach: 

Requires minimal assumptions. The design-based approach relies only on the randomization 
mechanism to develop estimators, and thus relies on fewer assumptions. Design-based methods do 
not require assumptions on the distributions of potential outcomes, and thus are non-parametric. 
In addition, unlike typical model-based assumptions, treatment effects are allowed to vary from one 
individual to the next. The approach emphasizes “robust” inference that could be less sensitive to 
model misspecification.  

There are three main assumptions required for the design-based estimators that are also required for 
the model-based estimators. The first is that potential outcome distributions have finite means and 
variances, which is likely to hold for most education outcomes. The second is that the potential 
outcomes of an individual depend only on that individual’s treatment or control assignment and 
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not on the assignments of other individuals in the sample.2 In the education context, this 
assumption is often plausible, but not always—for example, for designs where the treatment status of 
one student could affect the outcomes of other students in the same school or neighborhood due to 
peer effects. The final assumption is the independence between treatment status and potential 
outcomes, which is ensured by randomization for RCTs and is assumed to hold conditional on 
baseline covariates for QEDs with comparison groups. 

Applies to different types of outcome variables. Design-based estimators apply to both continuous 
outcomes (such as achievement test scores) and binary (1/0) outcomes (such as whether a student 
dropped out of school). Thus, there is no need to estimate impacts for binary outcomes using more 
complex logit or probit models that are often used for model-based analyses. 

Yields simple variance estimators. Estimators under the design-based approach are more 
transparent and easier to apply. The design-based approach yields explicit formulas for the impact 
and variance estimators, even for complex designs. In contrast, HLM methods require iterative, 
numerical maximum likelihood procedures that must converge.  

Requires less data for clustered designs. For multilevel designs, the design-based estimators require 
data only on cluster averages (see Equation (4)), whereas HLM methods by default use data at the 
individual level. This difference has practical importance because education researchers are 
increasingly using administrative records as a primary data source for their impact evaluations. Thus, 
design-based methods can help researchers gain access to these records by allaying common concerns 
that data agencies have about the potential for unwanted data disclosure if they release individual 
records. For example, for a clustered RCT with school-level random assignment, study researchers 
would need only to request school-level averages for the full sample of students and for each 
subgroup of interest (for instance, separate school-level averages for girls and boys).  

Allows for different assumptions about whether the impact findings can generalize beyond the 
study sample. The design-based approach allows the analyst to decide whether it is more realistic to 
assume (i) the “finite-population model” where the study results pertain only to study participants, sites, 
and intervention offerings at the time of the study or (ii) the “super-population model” where the study 
results generalize to a broader population. This choice might depend on the study context—for 
example, the number and range of sites, the purposeful or random selection of sites and individuals, 
and how the impact findings will be used for policy. The HLM approach, however, does not allow 
this choice: it assumes a super-population model.  

The design-based theory presented thus far is a finite-population model where potential outcomes are 

assumed to be fixed for the study. Under the super-population framework, the potential outcomes in 
the regression models are instead assumed to be randomly sampled from a broader population 

2 The literature refers to this condition as the stable unit treatment value assumption (SUTVA) (Rubin, 1986). 
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(which may be vaguely defined). This leads to estimators with statistical properties similar to those 
for the finite-population model, except that the final term of the variance estimators in Boxes 1 and 
2 is divided by the size of the super-population rather than the sample size. Thus, variances are larger 
under the super-population model, reflecting the statistical “penalty” of generalizing the impact 
findings to a broader population.   

Accommodates models with baseline covariates without assuming they enter the model additively. 
Baseline covariates (such as pre-intervention test scores) are often included in impact estimation 
models to improve the precision of the impact estimates and to adjust for random imbalances 
between the treatment and control groups. Model-based methods typically assume these covariates 
enter the model additively. But how do we know this assumed relationship between the outcomes 
and covariates is valid?  

Design-based methods do not require this assumption because the covariates do not enter the “true” 
RCT data-generating process in Equations (1) and (3). However, covariates can be added to the 
model in the typical way using a design-based variant of the OLS multiple regression estimator. This 
approach yields impact estimators that are consistent and asymptotically normal, with variance 
estimators similar to those in Boxes 1 and 2 except mean squared residuals from the fitted regression 

models are used in place of the 
 
 , 

 
 , 

  and 
 
  terms. Thus, this approach provides a 

principled framework for entering covariates into the model in the usual way without having to 
make assumptions about the relationship between the outcomes and covariates.3   

Extends to blocked designs.  Blocked designs are RCTs where random assignment is conducted 
separately within different sub-populations of the sample (for example, by site or grade level). The 
design-based approach uses this simple random assignment process in each block to develop impact 
estimators rather than specifying an ad hoc estimation model to account for the blocks. For the 
finite-population model, where the study blocks are treated as fixed for the study, the design-based 
estimators from above apply to each block separately, and can then be averaged to obtain overall 
impact findings. For the super-population model, where the study blocks are treated as a random 
sample, the form of the variance estimator differs but is still simple to apply in practice (see Box 3). 

Provides transparency on how clusters and blocks are weighted for the analysis. An important but 
often overlooked analysis issue is the choice of weights for combining data across clusters (such as 
schools) and blocks (such as sites). This choice could partly depend on the study research questions, 
but could also depend on researcher concerns about the undue influence of very large sites on the 
overall impact findings. For example, in a clustered design with school-level randomization, schools 
could be weighted (i) equally, to obtain impacts for the average school in the sample; (ii) based on 

3 For clustered designs, the design-based models discussed in this brief can include group-level covariates but not 
individual-level ones, which can lead to some precision losses. However, this problem can be overcome using alternative 
design-based methods that use the individual-level data to estimate the regression models (Schochet, 2013). 
      

 
6 

                                                           



 

student sample sizes, to obtain impacts for the average student in the sample; or (iii) using “precision” 
weighting, where schools whose mean student outcomes are measured more precisely are given larger 
weight in the analysis. By default, the HLM approach uses precision weighting. 

An advantage of the design-based approach is its transparency with regard to how weights enter the 
analysis (see Boxes 2 and 3). This transparency can encourage researchers to select weights that best 
align with their key study questions and to conduct exploratory analyses to assess the sensitivity of 
the impacts to alternative weights. It is more difficult, however, to discern the weighting scheme for 
HLM estimators (especially for models that include baseline covariates) and to undo the default 
precision weighting scheme to implement alternative schemes.  

Yields estimators that are similar in spirit to “robust” estimators, but have advantages for RCTs.  
It is common in certain fields to obtain standard errors for RCTs from OLS models that are robust 
to model misspecification. These estimators include robust standard errors for non-clustered designs 
(Huber, 1967; White, 1980) and extensions to clustered designs using generalized estimating 
equations (Liang and Zeger, 1986). These estimators share features with the design-based estimators. 
The benefit of the design-based approach, however, is that the randomization mechanism defines 
the model error terms. Thus, the variance estimators are derived directly from this known error 

structure. In contrast, the robust estimators provide variances for error structures that are unknown, 
and thus are not as tailored to the RCT context.  

Performs well in simulations. The design-based estimators have similar statistical properties to the 
HLM and robust estimators in very large samples, but not necessarily in typical samples used in 
practice. Thus, to compare the statistical properties of the estimators in real-world applications, 
Schochet (2016) conducted simulations by (i) randomly generating many datasets from models with 
known impacts and variances and (ii) comparing the estimated impacts and variances across the 
simulations to their true (known) values. The simulations were conducted assuming a typical 
clustered education RCT with school-level randomization and a student test score outcome. The 
simulations were performed for designs with and without site-level blocking, for models with and 
without a pretest baseline covariate, and for various model specifications used to generate the data.    

The simulation findings suggest that the design-based estimators are likely to perform well across a 
broad range of RCT designs used in education. For the clustered RCTs considered, estimated 
impacts have negligible bias if the sample contains at least 8 schools. Furthermore, with a sample of 
at least 12 schools, the standard errors produced by the design-based approach align with the true 
standard errors, and precision levels are comparable to those for the HLM and robust estimators, 
even for simulations based on the HLM assumptions.  
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Conclusions 

Design-based methods provide a unified, principled framework for analyzing data from impact 
evaluations for a wide range of designs used in education research, and are a viable alternative to 
model-based approaches. The design-based approach uses the building blocks of experiments to 
derive impact estimators, and thus relies on fewer assumptions than model-based approaches. The 
design-based estimators are unbiased and normally distributed in large samples (facilitating 
hypothesis testing) and yield simple variance expressions even for complex designs and models with 
covariates (increasing transparency). The estimators for clustered designs require data only on 
cluster-level averages, which can help overcome concerns about data disclosure risks when collecting 
administrative records data. The approach also allows flexibility in the choice of estimators 
depending on whether the impact findings are assumed to pertain to the study sample only or to 
generalize more broadly. Finally, the design-based estimators perform well in simulations, suggesting 
they are likely to perform well in real-world impact evaluations.  

Using data from nine education RCTs spanning a variety of different designs and contexts, Kautz, 
Schochet, and Tilley (2017) found that design-based, HLM, and robust estimators produced similar 
impact findings. Nonetheless, there were a few instances where impact estimates differed in statistical 
significance (that is, whether or not p-values were less than .05) across the three estimators. This 
occurred due to differences in underlying model assumptions, such as how blocks and clusters are 
weighted for the analysis and the choice of the finite- versus super-population model. Thus, it is 
critical for researchers to carefully consider their models and assumptions—regardless of the choice 
of estimator—to best identify appropriate analytic methods and statistical package options, rather 
than relying solely on default model specifications. Moreover, researchers should consider the 
tradeoffs between different assumptions, and how these assumptions affect the interpretation of 
study findings.
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